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The method of Bourbaki (Dieudonne) and Sz.-Nagy for approximating /z are really
the same.

There is a typo in the reference to the paper of Meray. The paper appeared in 1886
and not in 1986.

. W. Sierpinski, Dowd elementarny twierdzenia Weierstrass’a i wzoru interpolacyjnego

Borel’a, Prace Mat-fiz, t. XXII, (1911), 59-68. This paper, which seems to have been
overlooked, was pointed out to me by Milan Jovanovic. E. Borel, in his book Lecons
sur les fonctions de variables reelles et les developpements en series de polynomes,
Gauthier-Villars, Paris, 1905, on p. 79-82, suggests an approximation procedure us-
ing values of f in the following way. Approximate f by ZZ:O f(p/q)Pp,q where P, ,
are polynomials (independent of f, and of undetermined degree) obtained by ap-
proximating to the order 1/¢? the function ¢, , which is the hat function, zero off
[((p—1)/q,(p+1)/q|, piecewise continuous with knots at i/q and 1 at p/q. No con-
struction is given for P, ,, rather the Weierstrass theorem is evoked to claim existence
thereof. Borel also says that it would be interesting to effectively calculate the P, ,,
at least for small values of p and ¢. Sierpinski uses this outline, as given by Borel,
and explicitly constructs P, , without invoking Weierstrass as Borel does. In this way,
he also is proving the Weierstrass Theorem. See the reference to p. 80 in Borel by
Sierpinski. In formula (7), Sierpinski gets a polynomial approximation to |z| on an
interval (previously he had a rational approximation). In (9), he gets an approxima-
tion to the hat function, and the rest follows. He does not mention Lebesgue who also
had an approximation to |z|, but without error estimates. In any case, all this was
superseded one year later by the appearance of Bernstein’s paper where he introduced
the Bernstein polynomials.



