List of Publications of I. J. Schoenberg

The numbering corresponds to the listing in the Schoenberg Selecta (see last item below). In particular, the unnumbered items failed to appear in that listing.
[1] I. J. Schoenberg (1929), "Über total monotone Folgen mit stetiger Belegungsfunktion", Math. Z. 30, 761-767.
[2] I. J. Schoenberg (1928), "Über die asymptotische Verteilung reeller Zahlen mod 1", Math. Z. 28, 171-199.
[3] I. J. Schoenberg (1930), "Sur un théorème de Steiner relatif à la quadrature des courbes roulettes", Ann. Sci. Univ. Jassy 16, 6-13.
[4] I. J. Schoenberg (1930), "Über variationsvermindernde lineare Transformationen", Math. Z. 32, 321-328.
[5] G. A. Bliss and I. J. Schoenberg (1931), "On separation, comparison, and oscillation theorems for self-adjoint systems of linear second order differential equations", Amer. J. Math. LIII, 781-800.
[6] I. J. Schoenberg (1931), "The minimizing properties of geodesic arcs with conjugate end points", Ann. Math.(2) 32, 763-776.
[7] I. J. Schoenberg (1932), "On finite and infinite completely monotonic sequences", Bull. Amer. Math. Soc. Feb., 72-76.
[8] I. J. Schoenberg (1932), "On finite-rowed systems of linear inequalities in infinitely many variables. I", Trans. Amer. Math. Soc. 34, 594-619.
[9] I. J. Schoenberg (1932), "On finite-rowed systems of linear inequalities in infinitely many variables. II", Trans. Amer. Math. Soc. 35, 452-478.
[10] A. G. Bliss and I. J. Schoenberg (1932), "On the derivation of necessary conditions for the problem of Bolza", Bull. Amer. Math. Soc. Dec., 858-864.
[11] I. J. Schoenberg (1932), "Some applications of the calculus of variations to Riemannian geometry", Ann. Math 33, 485-495.
[12] I. J. Schoenberg (1933), "Convex domains and linear combinations of continuous functions", Bull. Amer. Math. Soc. April, 273-280.
[13] T. H. Hildebrandt and I. J. Schoenberg (1933), "On linear functional operations and the moment problem for a finite interval in one or several dimensions", Ann. Math. 34, 317-328.
[14] I. J. Schoenberg (1934), "A remark on the preceding note by Bochner", Bull. Amer. Math. Soc. April, 277-278.
[15] I. J. Schoenberg (1934), "Zur Abzählung der reellen Wurzeln algebraischer Gleichungen", Math. Z. 38, 546-564.
[16] I. J. Schoenberg (1935), "Remarks to Maurice Fréchet's article 'Sur la définition axiomatique d'une classe d'espace distanciés vectoriellement applicable sur l'espace de Hilbert"', Ann. Math. 36, 724-732.
[17] I. J. Schoenberg (1935), "On the zeros of the successive derivatives of integral functions", Proc. Amer. Math. Soc. 21, 674-676.
[18] I. J. Schoenberg (1936), "On asymptotic distributions of arithmetical functions", Trans. Amer. Math. Soc. 39, 315-330.
[19] I. J. Schoenberg (1936), "Extensions of theorems of Descartes and Laguerre to the complex domain", Duke Math. J. 2, 84-94.
[20] I. J. Schoenberg (1936), "On certain two-point expansions of integral functions of exponential type", Bull. Amer. Math. Soc. ???, 284-288.
[21] I. J. Schoenberg (1936), "On the zeros of successive derivatives of integral functions", Trans. Amer. Math. Soc. 40, 12-23.
[22] I. J. Schoenberg (1937), "Regular simplices and quadratic forms", J. London Math. Soc. 12, 48-55.
[23] I. J. Schoenberg (1937), "On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space", Ann. Math. 38(4), 787-793.
[24] I. J. Schoenberg (1938), "On the Peano curve of Lebesgue", Bull. Amer. Math. Soc. 44, 519.
[25] I. J. Schoenberg (1938), "Metric spaces and positive definite functions", Trans. Amer. Math. Soc. 44, 522-536.
[26] I. J. Schoenberg (1938), "Metric spaces and completely monotone functions", Ann. Math. 39(4), 811-841.
[27] I. J. Schoenberg (1940), "On metric arcs of vanishing Menger curvature", Ann. Math. 41, 715-726.
[28] J. von Neumann and I. J. Schoenberg (1941), "Fourier integrals and metric geometry", Trans. Amer. Math. Soc. 50, 226-251.
[29] I. J. Schoenberg (1942), "Positive definite functions on spheres", Duke Math. J. 9, 96-108.
[30] I. J. Schoenberg (1942), "On local convexity in Hilbert space", Bull. Amer. Math. Soc. 48, 432-436.
[31] I. J. Schoenberg (1946), "Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing or graduation, a first class of analytic approximation formulas", Quart. Appl. Math. 4, 45-99.
[32] I. J. Schoenberg (1946), "Contributions to the problem of approximation of equidistant data by analytic functions, Part B: On the problem of osculatory interpolation, a second class of analytic approximation formulae", Quart. Appl. Math. 4, 112-141.
[33] H. Rademacher and I. J. Schoenberg (1946), "An iteration method for calculation with Laurent series", Quart. Appl. Math. IV, 142-159.
[34] I. J. Schoenberg (1947), "On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pólya-Schur type", Proc. Nat. Acad. Sci. 33, 11-17.
[-] H. B. Curry and I. J. Schoenberg (1947), "On spline distributions and their limits:
The Polya distribution functions", Bull. Amer. Math. Soc. 53, 1114.
[35] I. J. Schoenberg (1948), "Some analytic aspects of the problem of smoothing", in Courant Anniv. Vol. (xxx, ed), xxx (xxx), 35??-370.
[36] I. J. Schoenberg (1948), "On variation diminishing integral operators of the convolution type", Proc. Nat. Acad. Sci. 34, 164-169.
[37] I. J. Schoenberg and A. Whitney (1949), "Sur la positivité des déterminants de translations des fonctions de fréquence de Pólya avec une application a une problème d'interpolation", C. R. Acad. Sci. Paris Ser. A 228, 1996-1998.
[38] H. Rademacher and I. J. Schoenberg (1950), "Convex domains and Chebychev's approximation problem", Canad. J. Math. 2, 245-256.
[39] I. J. Schoenberg (1950), "On Pólya frequency functions. II. Variation-diminishing integral operators of the convolution type", Acta Sci. Math. (Szeged) 12, 97-106.
[40] I. J. Schoenberg (1950), "The finite Fourier series and elementary geometry", Amer. Math. Monthly 57, 390-404.
[41] M. Aissen, A. Edrei, A. M. Whitney, and I. J. Schoenberg (1951), "On the generating functions of totally positive sequences", Proc. Nat. Acad. Sci. 37, 303-307.
[42] A. M. Whitney and I. J. Schoenberg (1951), "A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations", Compositio Math. 9, 141-160.
[43] I. J. Schoenberg (1951), "On Pólya frequency functions. I. The totally positive functions and their Laplace transforms", J. Analyse Math. 1, 331-374.
[44] T. S. Motzkin and I. J. Schoenberg (1952), "On lineal entire functions of n complex variables", Proc. Amer. Math. Soc. 3, 517-526.
[45] M. Aissen, A. M. Whitney, and I. J. Schoenberg (1952), "On the generating functions of totally positive sequences. I", J. Analyse Math. 2, 93-103.
[46] I. J. Schoenberg (1952), "A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal", Proc. Amer. Math. Soc. 3, 961-964.
[47] I. J. Schoenberg and A. Whitney (1953), "On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves", Trans. Amer. Math. Soc. 74, 246-259.
[48] I. J. Schoenberg (1953), "On smoothing operations and their generating functions", Bull. Amer. Math. Soc. 59, 199-230.
[49] I. J. Schoenberg (1953), "On a theorem of Kirzbraun and Valentine", Amer. Math. Monthly 60, 620-622.
[50] T. S. Motzkin and I. J. Schoenberg (1954), "The relaxation method for linear inequalities", Canad. J. Math. 6, 393-404.
[51] I. J. Schoenberg (1954), "An isoperimetric inequality for closed curves in even-dimensional Euclidean spaces", Acta Math. 91, 143-164.
[52] I. J. Schoenberg (1955), "A note on multiply positive sequences and the Descartes rule of signs", Rend. Circ. Mat. Palermo (2) 4, 123-131.
[53] I. J. Schoenberg (1955), "On the zeros of the generating functions of multiply positive sequences and functions", Ann. Math. 62, 447-471.
[54] I. J. Schoenberg (1958), "Some extremal problems for positive definite sequences and related extremal convex conformal maps of the circle", Kon. Ned. Akad. Amsterdam 61, 28-37.
[55] G. Pólya and I. J. Schoenberg (1958), "Remarks on de la Vallée Poussin means and convex conformal maps of the circle", Pacific J. Math. 8, 295-334.
[56] I. J. Schoenberg (1958), "Spline functions, convex curves and mechanical quadratures", Bull. Amer. Math. Soc. 64, 352-357.
[57] I. J. Schoenberg (1959), "On variation diminishing approximation methods", in On Numerical Approximation (R. E. Langer, ed), U. Wis. Press (Madison), 249-274.
[58] I. J. Schoenberg (1959), "The integrability of certain functions and related summability methods", AMMo 66, 361-375 and 562-563.
[59] I. J. Schoenberg (1959), "On the maxima of certain Hankel determinants and the zeros of the classical orthogonal polynomials", Kon. Ned. Akad. Amsterdam 21, 282-290.
[60] B. Epstein and I. J. Schoenberg (1959), "On a conjecture concerning schlicht functions", Bull. Amer. Math. Soc. 65, 273-275.
[61] A. S. Besicovitch and I. J. Schoenberg (1959), "Sur les arcs ascendants à pente partout nulle et des problémes qui s'y rattachent", C. R. Acad. Sci. Paris 249, 1079-1080.
[62] I. J. Schoenberg (1960), "On the question of unicity in the theory of best approximation", Ann. New York Acad. Sci. 86, 682-692.
[63] J. C. Mairhuber, R. E. Williamson, and I.J. Schoenberg (1959), "On variation diminishing transformations on the circle", Rend. Circ. Mat. Palermo (2) 8, 241-270.
[64] G. Szegö and I. J. Schoenberg (1960), "An extremum problem for polynomials", Compositio Math. 14, 260-268.
[-] I. J. Schoenberg (1960), "Solution to Problem 59-2, N-dimensional Volume", SIAM Rev. 2(1), 43-45.
[65] C. T. Yang and I. J. Schoenberg (1961), "On the unicity of solutions of problems of best approximation", Ann. Mat. Pura Appl. (4) 54, 1-12.
[66] A. S. Besicovitch and I. J. Schoenberg (1961), "On Jordan arcs and Lipschitz classes of functions defined on them", Acta Math. 106, 113-136.
[67] I. J. Schoenberg (1962), "On two theorems of P. Erdös and A. Renyi", Illinois J. Math. 6, 53-58.
[68] I. J. Schoenberg (1962), "On two theorems of Archimedes and F. J. van den Berg", Simon Stevin 5, 133-138.
[69] I. J. Schoenberg (1962), "Extrema for gap power series of positive real part", Proc. Nat. Acad. Sci. 48, 1151-1154.
[70] I. J. Schoenberg (1962), "On the Besicovitch-Perron solution of the Kakeya problem", in Studies in Mathematical Analysis and Related Topics, Pólya volume (xxx, ed), Stanford Univ. Press (Stanford CA), 359-363.
[71] I. J. Schoenberg (1962), "On certain minima related to the Besicovitch-Kakeya problem", Mathematica (Cluj) 4, 145-148.
[72] I. J. Schoenberg (1964), "Spline interpolation and best quadrature formulae", Bull. Amer. Math. Soc. 70, 143-148.
[73] I. J. Schoenberg (1964), "Spline interpolation and the higher derivatives", Proc. Nat. Acad. Sci. 51, 24-28.
[74] Ch. Pisot and I. J. Schoenberg (1964), "Arithmetic problems concerning Cauchy's functional equation. I", Illinois J. Math. 8, 40-56.
[75] I. J. Schoenberg (1964), "On best approximations of linear operators", Indag. Math. 26, 155-163.
[76] I. J. Schoenberg (1964), "Spline functions and the problem of graduation", Proc. Amer. Math. Soc. 52, 947-950.
[77] I. J. Schoenberg (1964), "On trigonometric spline interpolation", J. Math. Mech. 13(5), 795-825.
[78] I. J. Schoenberg (1964), "A note on the cyclotomic polynomial", Mathématika 11, 131-136.
[79] I. J. Schoenberg (1964), "Arithmetic problems concerning Cauchy's functional equation", Compositio Math. 16, 169-175.
[80] I. J. Schoenberg (1964), "On interpolation by spline functions and its minimal properties", in On Approximation Theory (Proc. Oberwolfach Conf. 4-10 Aug, 1963) (P. L. Butzer and J. Korevaar, eds), ISNM Vol. 5, Birkhäuser (Basel), 109-129.
[81] Ch. Pisot and I. J. Schoenberg (1965), "Arithmetic problems concerning Cauchy's functional equation. II", Illinois J. Math. 9, 129-136.
[82] I. J. Schoenberg (1965), "Extrema for gap power series of positive real part", J. Analyse Math. 14, 379-391.
[83] I. J. Schoenberg (1965), "On monosplines of least deviation and best quadrature formulae", SIAM J. Numer. Anal. 2, 144-170.
[-] I. J. Schoenberg (1965), "Letter to Philip J. Davis", 31 May.
[84] F. Cunningham and I. J. Schoenberg (1965), "On the Kakeya constant", Canad. J. Math. 17, 946-956.
[85] I. J. Schoenberg (1964), "Extremum problems for mass-distributions in a finite interval", Rend. Circ. Mat. Palermo (2) 13, 1-12.
[86] H. B. Curry and I. J. Schoenberg (1966), "On Pólya frequency functions IV: the fundamental spline 09 functions and their limits", J. Analyse Math. 17, 71-107.
[87] I. J. Schoenberg (1966), "On monosplines of least deviation and best quadrature formulae II.", SIAM J. Numer. Anal. 3, 321-328.
[88] S. J. Einhorn and I. J. Schoenberg (1966), "On Euclidean sets having only two distances between points", Indag. Math. 28, 479-488 and 489-504.
[89] I. J. Schoenberg (1966), "On Hermite-Birkhoff interpolation", J. Math. Anal. Appl. 16, 538-543.
[90] M. Marsden and I. J. Schoenberg (1966), "On variation diminishing spline approximation methods", Mathematica 8, 61-82.
[91] S. K. Zaremba and I. J. Schoenberg (1967), "On Cauchy's lemma concerning convex polygons", Canad. J. Math. 19, 1062-1071.
[-] F. R. Loscalzo and I. J. Schoenberg (1967), "On the use of spline functions for the approximation of solutions of ordinary differential equations", MRC 723.
[92] I. J. Schoenberg (1967), "On spline functions (with a supplement by T. N. E. Greville)", in Inequalities I (O. Shisha, ed), Academic Press (New York), 255-291.
[93] I. J. Schoenberg (1968), "On the Ahlberg-Nilson extension of spline interpolation: the g-splines and their optimal properties", J. Math. Anal. Appl. 21, 207-231.
[94] I. J. Schoenberg (1968), "On spline interpolation at all integer points of the real axis", Matematica (Cluj) 10, 151-170.
[95] I. J. Schoenberg (1969), "Monosplines and quadrature formulae", in Theory and Applications of Spline Functions (T. N. E. Greville, ed), Academic Press (New York), 157-207.
[96] I. J. Schoenberg (1968), "Spline interpolation and the higher derivatives", in $A b$ handlungen aus Zahlentheorie und Analysis (P. Turan, ed), Deutscher Verlag der Wissenschaften (Berlin), 279-295.
[-] I. J. Schoenberg (1968), "Publications of Edmund Landau", in Abhandlungen aus Zahlentheorie und Analysis. Zur Erinnerung an Edmund Landau (1877-1938) (xxx, ed), VEB Deutscher Verlag der Wissenschaften (Berlin), 337-355.
[97] I. J. Schoenberg (1969), "Linkages and distance geometry. I and II.", Indag. Math. 31, 43-63.
[98] I. J. Schoenberg (1969), "Cardinal interpolation and spline functions", J. Approx. Theory 2, 167-206.
[-] I. J. Schoenberg (ed.) (1969), Approximation with Special Emphasis on Spline Functions, Academic Press (New York).
[99] I. J. Schoenberg and Z. Ziegler (1970), "On cardinal monosplines of least L_{∞}-norm on the real axis", J. Analyse Math. 23, 409-436.
[100] A. Cavaretta and I. J. Schoenberg (1972), "Solution of Landau's problem concerning higher derivatives on the halfline", in Constructive Function Theory (B. Penkov and D. Vacov, eds), Bulgarian Academy of Sciences (Sofia), 297-308. (The version in Schoenberg's Selecta is much to be preferred.)
[101] I. J. Schoenberg (1970), "A second look at approximate quadrature formulae and spline interpolation", Advances in Math. 4, 277-300.
[102] I. J. Schoenberg (1971), "On equidistant cubic spline interpolation", Bull. Amer. Math. Soc. 77, 1039-1044.
[103] I. J. Schoenberg and A. Sharma (1971), "The interpolatory background of the EulerMaclaurin quadrature formula", Bull. Amer. Math. Soc. 77, 1034-1038.
[104] I. J. Schoenberg (1971), "On polynomial spline functions on the circle. I and II", in Proceedings of the Conference on Constructive Theory of Functions (xxx, ed), Hungarian Acad. Sci. (Budapest), 403-433.
[105] I. J. Schoenberg (1971), "The perfect B-splines and a time-optimal control problem", Israel J. Math. 10, 261-274.
[106] I. J. Schoenberg (1971), "Norm inequalities for a certain class of C^{∞} functions", Illinois J. Math. 10, 364-372.
[107] I. J. Schoenberg (1972), "Notes on spline functions I. The limits of the interpolating periodic spline functions as their degree tends to infinity", Indag. Math. 34(5), 412422.
[108] I. J. Schoenberg (1972), "Cardinal interpolation and spline functions: II. Interpolation of data of power growth", J. Approx. Theory 6, 404-420.
[109] P. R. Lipow and I. J. Schoenberg (1973), "Cardinal interpolation and spline functions III. 09 Cardinal Hermite interpolation", Linear Algebra Appl. 6, 273-304.
[-] I. J. Schoenberg (1972), "Notes on spline functions II. On the smoothing of histograms", University of Wisconsin-Madison, Mathematics Research Center, Rpt. \# 1222.
[110] I. J. Schoenberg (1972), "Cardinal interpolation and spline functions IV. The exponential Euler splines", in Linear Operators and Approximation, ISNM 20 (P. L. Butzer, J. P. Kahane, and B. Sz.-Nagy, eds), Birkhäuser (Basel), 382-404.
[111] I. J. Schoenberg and A. Sharma (1973), "Cardinal Interpolation and spline functions V. The B-splines for cardinal Hermite interpolation", Linear Algebra Appl. 7, 1-42.
[112] I. J. Schoenberg (1974), "Cardinal interpolation and spline functions VI. Semi-cardinal interpolation and quadrature formulae", J. Analyse Math. XXVII, 159-204.
[113] I. J. Schoenberg (1974), "Cardinal interpolation and spline functions VII. The behavior of cardinal spline interpolation as their degree tends to infinity", J. Analyse Math. XXVII, 205-229.
[114] I. J. Schoenberg (1973), Cardinal Spline Interpolation, CBMS, SIAM (Philadelphia).
[115] I. J. Schoenberg (1973), "Notes on spline functions III: On the convergence of the interpolating cardinal splines as their degree tends to infinity", Israel J. Math. 16, 87-93.
[116] F. B. Richards and I. J. Schoenberg (1973), "Notes on spline functions IV: A cardinal spline analogue of the theorem of the brothers Markov", Israel J. Math. 16, 94-102.
[-] I. J. Schoenberg (1973), "List of Publications of I. J. Schoenberg", J. Approx. Theory 8, x-xiv.
[117] I. J. Schoenberg and S. D. Silliman (1974), "On semi-cardinal quadrature formulae", Math. Comp. 28(126), 483-497.
[-] I. J. Schoenberg and S. D. Silliman (1973), "On semi-cardinal quadrature formulae", in Approximation Theory (G. G. Lorentz et al., eds), Academic Press (New York), 461-467.
[118] I. J. Schoenberg (1973), "Splines and histograms (with an Appendix by C. de Boor)", in Spline Functions and Approximation Theory, ISNM 21 (A. Meir and A. Sharma, eds), Birkhäuser Verlag (Basel), 277-327.
[119] I. J. Schoenberg (1974), "Spline functions and differential equations - First order equations", in Studies in Numerical Analysis (B.K.P. Scaife, ed), Academic Press (London), 311-324.
[120] I. J. Schoenberg (1973), "Remarks concerning the numerical inversion of the Laplace transform due to Bellman, Kalaba, and Lockett", J. Math. Anal. Appl. 43, 823-828.
[-] T. N. E. Greville, I. J. Schoenberg, and A. Sharma (1973), "The spline interpolation of sequences satisfying a linear recurrence relation", in Approximation Theory (G. G. Lorentz et al., eds), Academic Press (New York), 365-367.
[121] C. de Boor and I. J. Schoenberg (1973), "Unique prime factorization and lattice points", Math. Mag. 46, 198-203.
[122] I. J. Schoenberg (1973), "The elementary cases of Landau's problem of inequalities between derivatives", Amer. Math. Monthly 80, 121-158.
[123] I. J. Schoenberg (1975), "Notes on spline functions V. Orthogonal or Legendre splines", J. Approx. Theory 13, 84-104.
[124] I. J. Schoenberg (1976), "Notes on spline functions VI. Extremum problems of the Landau-type for the differential operators $D^{2} \pm 1 "$, in Studies in Spline Functions and Approximation Theory (S. Karlin, C. Micchelli, A. Pinkus, and I. Schoenberg, eds), Academic Press (New York), 353-368.
[125] I. J. Schoenberg (1975), "Remarks on two geometric conjectures of L. Fejes Tóth", Analele ştiinţifice ale Universiţătii "Al.I. Cuza" din Iaşi XXI, 9-13.
[126] D. J. Newman and I. J. Schoenberg (75), "Splines and the logarithmic function", Pacific J. Math. 61, 241-258.
[127] I. J. Schoenberg (1975), "On the motion of a billard ball in two dimensions", Delta 5, 1-17.
[128] I. J. Schoenberg (1976), "On Micchelli's theory of cardinal L-splines", in Studies in Spline Functions and Approximation Theory (S. Karlin, C. Micchelli, A. Pinkus, and I. Schoenberg, eds), Academic Press (New York), 251-276.
[129] I. J. Schoenberg (1976), "On the remainders and the convergence of cardinal spline interpolation for almost periodic functions", in Studies in Spline Functions and Approximation Theory (S. Karlin, C. Micchelli, A. Pinkus, and I. Schoenberg, eds), Academic Press (New York), 277-303.
[130] I. J. Schoenberg (1976), "On the location of the frets on the guitar", Amer. Math. Monthly 83, 550-552.
[131] I. J. Schoenberg (1976), "Extremum problems for the motions of a billiard ball. I. The L_{p} norm, $1 \leq p<\infty$ ", Indag. Math. 38, 66-75.
[-] I. J. Schoenberg (1976), "Problem 75-21, n-dimensional simple harmonic motion", SIAM Rev. 18(4), 772-773.
[132] I. J. Schoenberg (1976), "Extremum problems for the motion of a billiard ball. II. The L_{∞} norm", Indag. Math. 38, 263-279.
[133] I. J. Schoenberg (1976), "On Chebyshev and Markov-type problems for polynomials in a circular ring", in Fourier Analysis and Approximation Theory (xxx, ed), Colloquia Mathematica Societatis Janos Bolyai, 19, (Budapest), 679-712.
[134] C. de Boor and I. J. Schoenberg (1976), "Cardinal interpolation and spline functions VIII: The Budan 09 Fourier theorem for splines and applications", in Spline Functions, Karlsruhe 1975 (K. Böhmer, G. Meinardus, and W. Schempp, eds), Lecture Notes in Math. 501, Springer (Heidelberg), 1-77.
[135] I. J. Schoenberg (1977), "The Landau problem for motions in a ring and in bounded continua", Amer. Math. Monthly 84, 1-12. A somewhat expanded version appeared as MRC TSR 1563, Oct 1975.
[136] I. J. Schoenberg (1976), "The Landau problem of the differential operator $D^{2}-\alpha^{2}$ in a circular ring", in Fourier Analysis and Approximation Theory (xxx, ed), Colloquia Mathematica Societatis Janos Bolyai, 19, (Budapest), 713-723.
[137] I. J. Schoenberg (1977), "On the zeros of the successive derivatives of integral functions. II", in Complex Analysis, Kentucky 1976 (J. D. Buchholz and T. J. Suffridge, eds), Lecture Notes in Mathematics 599, Springer-Verlag (New York), 109-116.
[138] I. J. Schoenberg (1977), "Approximating lengths, areas and volumes by polygons and polyhedra", Delta 7, 32-46.
[139] T. N. E. Greville, A. Sharma, and I. J. Schoenberg (1976), "The spline interpolation of sequences satisfying a linear recurrence relation", J. Approx. Theory 17, 200-221.
[140] J. M. Pollin and I. J. Schoenberg (1980), "On the matrix approach to Fibonacci numbers and Fibonacci pseudoprimes", Fibonacci Quart. 18, 261-268.
[141] I. J. Schoenberg (1978), "The Landau problem. I. The case of motions on sets", Indag. Math. 40, 276-286.
[142] I. J. Schoenberg (1977), "On the arithmetic-geometric mean", Delta 7, 49-65.
[143] I. J. Schoenberg (1979), "On cardinal spline smoothing", in Proc. Internat. Symp. Approx. Theory, Campinas, Brazil (J. B. Prolla, ed), North-Holland Publ., Doordrecht (Holland), 383-407.
[144] I. J. Schoenberg (1979), "On a problem of Steinhaus on lattice points", AMMo 86, 765-766.
[145] I. J. Schoenberg (1980), "On Jacobi-Bertrand's proof of a theorem of Poncelet", in Studies in Pure Mathematics to the Memory of Paul Turán (xxx, ed), Hungarian Academy of Sciences (Budapest), 623-627.
[146] I. J. Schoenberg (1978), "Extremum problems for the multi-dimensional case of König and Szücs of billiard ball motions", Math. Rep. Acad. Sci. Canada 1, 37-40.
[147] I. J. Schoenberg (1978), "Extremum problems for the motions of a billiard ball. III: The multidimensional case of König and Szücs", Studia Math. 13, 53-78.
[148] I. J. Schoenberg (1979), "Extremum problems for the motion of a billiard ball. IV. A higher-dimensional analogue of Kepler's Stella octangula", Studia Sci. Math. Hungar. 14, 273-292.
[149] I. J. Schoenberg (1981), "The Landau problem. II. The case of motions on curves", Indag. Math. 43, 325-335.
[150] I. J. Schoenberg (1981), "The Landau problem. III. Motions on special curves and time-optimal control problems", Indag. Math. 43, 337-351.
[151] I. J. Schoenberg (1982), "The harmonic analysis of skew polygons as a source of outdoor sculptures", in The Geometric Vein, The Coxeter Festschrift (C. Davis, B. Grünbaum, F.A. Sherk, eds), Springer Verlag (New York), 165-176.
[152] I. J. Schoenberg (1980), "The Landau problem for motions on curves and time-optimal control problems", in Approximation Theory III (E. W. Cheney, ed), Academic Press (New York), 1980. 811-821;
[153] T. S. Motzkin and I. J. Schoenberg (1980), "On Fejér sets in linear and spherical spaces (NBS Report of August 25, 1952, 19 pages)", Colloq. Math. Soc. János Bolyai 35, 861-875.
[154] R. Askey, A. Sharma, and I. J. Schoenberg (1982), "Hausdorff's moment problem and expansion in Legendre polynomials", J. Math. Anal. Appl. 89, 251-261.
[155] I. J. Schoenberg (1981), "A direct derivation of a Jacobian identity from elliptic functions", AMMo 88, 616-618.
[156] I. J. Schoenberg (1982), "Two applications of approximate differentiation formulae: An extremum problem for multiply monotone functions and the differentiation of asymptotic expansions", J. Math. Anal. Appl. 89, 251-261.
[157] I. J. Schoenberg (1981), "On polynomial interpolation at the points of a geometric progression", Proc. Roy. Soc. Edinburgh Sect. A 90A, 195-207.
[158] I. J. Schoenberg (1983), "Interpolating splines as limits of polynomials", Linear Algebra Appl. 52/53, 617-628.
[159] I. J. Schoenberg (1983), "A new approach to Euler splines", J. Approx. Theory 39, 324-337.
[-] I. J. Schoenberg (1982), Mathematical Time Exposures, Math. Assoc. America (xxx).
[160] T. N. T. Goodman, I. J. Schoenberg, and A. Sharma (1986), "Piecewise smooth solutions of some difference-differential equations", J. Approx. Theory 48, 262-271.
[161] T. N. E. Greville, A. Sharma, and I. J. Schoenberg (1982), "The behavior of the exponential Euler spline $S_{n}(x ; t)$ as $n \rightarrow \infty$ for negative values of the base $t "$, Canad. Math. Soc. Conf. Proceedings 3, 185-198.
[162] I. J. Schoenberg (1984), "Euler's contribution to cardinal spline interpolation: The exponential Euler spline", in Leonhardt Euler 1707-1783, Beiträge zu Leben und Werk (xxx, ed), Birkhäuser (Basel), 199-213. J. Approx. Theory; 39; 1983; 324-337;
[163] I. J. Schoenberg (1985), "A direct approach to the Villarceau circles of a torus", Simon Stevin 59, 365-372.
[164] I. J. Schoenberg (1983), "Self-reflecting skew polygons and polytopes in the 4-dimensional hypercube", Geom. Dedicata 14, 355-373.
[-] I. J. Schoenberg (1984), "On a theorem of Szegő on univalent convex maps of the unit circle", MRC Technical Summary Report \#2647.
[165] A. W. Goodman and I. J. Schoenberg (1984), "On a theorem of Szegö on univalent convex maps of the unit circle", J. Analyse Math. 44, 200-204.
[166] D. W. Crowe and I. J. Schoenberg (1984), "On the equidecomposability of a regular triangle and a square of equal area", Giessener Mitteilungen 164, 59-64.
[-] I. J. Schoenberg (1984), "On the spans of polynomials and the spans of a Laguerre-Polya-Schur sequence of polynomials", MRC Technical Summary Report \#2757.
[-] I. J. Schoenberg (1984), "On the quadratic mean radius of a polynomial in $\mathbb{C}[z]$ ", MRC Technical Summary Report \#2773.
[167] I. J. Schoenberg (1985), "On hypocycloids and their diameters", J. College Math. 16, 262-267.
[168] I. J. Schoenberg (1986), "A conjectured analogue of Rolle's theorem for polynomials with real and complex coefficients", AMMo 93, 8-13.
[169] I. J. Schoenberg (1985), "On the anti-cylinder", MRC Technical Summary Report \# 2842 .
[170] A. W. Goodman and I. J. Schoenberg (1987), "A proof of Grace's theorem by induction", Honam Math. J. 9, 1-6.
[171] I. J. Schoenberg (8), "Outdoor sculptures", Libertas Mathematica. 1988; 11-17;
[-] I. J. Schoenberg (1986), "Review of Mathematical Snapshots, 3rd American Ed., by H. Steinhaus", College Mathematics J. 17(2), 197-199.
[172] I. J. Schoenberg (1988), "The Chinese remainder problem and polynomial interpolation", College Math. J. 18(4), 320-322.
[-] I. J. Schoenberg (1986), "On the theory and practice of multi-dim. indices mod m. A circular slide-rule for the modulus $m=100 "$, MRC Technical Summary Report \#2955.
[173] I. J. Schoenberg (1988), "On vector indices mod m", Math. Mag. 61(4), 246-252.
[-] I. J. Schoenberg (1988), Selected Papers, Vols. 1 \&̇ 2, C. de Boor (ed.), Birkhäuser (Basel).

