ON AN EXTREMAL PROPERTY OF CHEBYSHEV POLYNOMIALS

Eugene Remes

Given a closed interval $S=[a, b]$ of length $\ell=b-a$, and two positive numbers $\lambda=\theta \ell$, $0<\theta<1$, and $0<\kappa$, we consider the following problem ${ }^{1}$:

Problem. Find an exact upper bound on the quantity

$$
\begin{equation*}
\max _{a \leq x \leq b}\left|P_{n}(x)\right| \tag{1}
\end{equation*}
$$

where P_{n} is a polynomial of degree at most n satisfying the inequality

$$
\begin{equation*}
\left|P_{n}(x)\right| \leq \kappa \tag{2}
\end{equation*}
$$

on a set of points (otherwise undetermined) $E \subset S$ of measure $\geq \lambda$.
We will show that the upper bound in question has the exact value

$$
\begin{equation*}
M=\kappa T_{n}\left(\frac{2 \ell}{\lambda}-1\right)=\kappa T_{n}\left(\frac{2}{\theta}-1\right) \tag{3}
\end{equation*}
$$

where T_{n} is the trigonometric polynomial of degree n

$$
\begin{equation*}
T_{n}(z)=\frac{1}{2}\left\{\left(z+\sqrt{z^{2}-1}\right)^{n}+\left(z-\sqrt{z^{2}-1}\right)^{n}\right\} . \tag{4}
\end{equation*}
$$

Solution. We will first verify that (1) attains the value (3) for the two Chebyshev polynomials

$$
\begin{equation*}
P_{n, 1}(x)=\kappa T_{n}\left(\frac{2 x-a-(a+\lambda)}{\lambda}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n, 2}(x)=\kappa T_{n}\left(\frac{2 x-(b-\lambda)-b}{\lambda}\right), \tag{6}
\end{equation*}
$$

[^0]which satisfy the condition (2), one on the interval $[a, a+\lambda]$, the other on the interval $[b-\lambda, b]$. It remains to prove that among all admissible polynomials $P_{n}(x)$, the two polynomials (5) and (6) are the only (up to multiplication by ± 1), for which the quantity (1) attains the value (3).

Let $P_{n}(x)$ be an admissible polynomial different from (5) and (6); let $E \subset S$ be a set of points on which (2) holds. This set of points is evidently composed of a certain number $\nu \leq n$ of closed intervals some which can be one point. Let

$$
\begin{equation*}
\sigma_{1}=\left[\alpha_{1}, \beta_{1}\right], \quad \sigma_{2}=\left[\alpha_{2}, \beta_{2}\right], \ldots, \sigma_{m}=\left[\alpha_{m}, \beta_{m}\right] \tag{7}
\end{equation*}
$$

be those of them $(m \leq \nu)$ of positive length arranged in increasing order. Let $\xi \in S$ be a point such that $\left|P_{n}(x)\right|$ attains its maximum value on the interval $[a, b]$:

$$
\begin{equation*}
\left|P_{n}(\xi)\right|=\max _{a \leq x \leq b}\left|P_{n}(x)\right| . \tag{8}
\end{equation*}
$$

We will show that $\left|P_{n}(\xi)\right| \leq M$, where M designates the value (3).
We distinguish between three cases depending on:

$$
\begin{equation*}
\xi>\beta_{m}, \quad \xi<\alpha_{1} \text { or finally } \beta_{i}<\xi<\alpha_{i+1} \tag{9}
\end{equation*}
$$

where in the last case $i \in\{1,2, \ldots, m-1\}$.
We start by considering the first case. Let $x_{1}=a, x_{2}, x_{3}, \ldots, x_{n+1}=a+\lambda$ be the points on the interval $[a, a+\lambda]$, where the Chebyshev polynomial (5) attains, with alternating sign, the values $\pm \kappa$. Let, in addition, $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n+1}$ be the $n+1$ points that we take in the set E satisfying the following conditions: firstly, $\bar{x}_{1}=\alpha_{1}$; then for $\ell=2,3, \ldots, n+1$ let \bar{x}_{ℓ} be the first of the points in E (traversing this set of points from left to right) for which

$$
\begin{equation*}
\operatorname{mes}\left(\left[\bar{x}_{1}, \bar{x}_{\ell}\right] \cdot E\right)=x_{\ell}-x_{1} \tag{10}
\end{equation*}
$$

the product in the parenthesis meaning the set of points appearing both in the interval $\left[\bar{x}_{1}, \bar{x}_{\ell}\right]$ and in the set E. \{Transl: The intersection of the two sets.\}

Applying the Lagrange interpolation formula, one time with the polynomial (5) and another time with the polynomial $P_{n}(x)$, we can write the following two equalities:

$$
\begin{gather*}
M=P_{n, 1}(b)=\sum_{i=1}^{n+1} \frac{\left(b-x_{1}\right) \cdots\left(b-x_{i-1}\right)\left(b-x_{i+1}\right) \cdots\left(b-x_{n+1}\right)}{\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n+1}\right)} P_{n, 1}\left(x_{i}\right) \tag{11}\\
P_{n}(\xi)=\sum_{i=1}^{n+1} \frac{\left(\xi-\bar{x}_{1}\right) \cdots\left(\xi-\bar{x}_{i-1}\right)\left(\xi-\bar{x}_{i+1}\right) \cdots\left(\xi-\bar{x}_{n+1}\right)}{\left(\bar{x}_{i}-\bar{x}_{1}\right) \cdots\left(\bar{x}_{i}-\bar{x}_{i-1}\right)\left(\bar{x}_{i}-\bar{x}_{i+1}\right) \cdots\left(\bar{x}_{i}-\bar{x}_{n+1}\right)} P_{n}\left(\bar{x}_{i}\right) . \tag{12}
\end{gather*}
$$

On comparing their right-hand parts term by term, one notes the following relations:
ג) $\quad\left|P_{n, 1}\left(x_{i}\right)\right|=\kappa ;\left|P_{n, 1}\left(\bar{x}_{i}\right)\right| \leq \kappa$
乃) $\quad b-x_{j} \geq \xi-\bar{x}_{j} \geq 0$
r) $\quad\left|x_{i}-x_{j}\right| \leq\left|\bar{x}_{i}-\bar{x}_{j}\right|, \quad i, j=1,2, \ldots, n+1 ; j \neq i$.

Moreover, one also sees that the $n+1$ terms on the last part of (11) are all the same sign (being +), which need not hold in (12). Thus one also has

$$
\left|P_{n}(\xi)\right|<M,
$$

at least that $P_{n}(x)$ is not identical to $\pm P_{n, 1}(x)$.
In the second case (9), that is to say when $\xi<\alpha_{1}$, the reasoning is totally analogous, on replacing the polynomial (5) by (6).

Finally in the case in (9)

$$
\begin{equation*}
\beta_{i}<\xi<\alpha_{i+1} \tag{14}
\end{equation*}
$$

set

$$
\begin{align*}
& \frac{\operatorname{mes}([a, \xi] \cdot E)}{\xi-a}=\theta_{1} \tag{15}\\
& \frac{\operatorname{mes}([\xi, b] \cdot E)}{b-\xi}=\theta_{2} \tag{16}
\end{align*}
$$

It is clear that the two numbers θ_{1} and θ_{2} can not be at the same time less than $\theta=\frac{\lambda}{\ell}$. Replacing, in the previous reasoning, the interval $[a, b]$ once by $[a, \xi]$ and another time by $[\xi, b]$, one has simultaneously

$$
\begin{align*}
& \left|P_{n}(\xi)\right|<\kappa T_{n}\left(\frac{2}{\theta_{1}}-1\right) \\
& \left|P_{n}(\xi)\right|<\kappa T_{n}\left(\frac{2}{\theta_{2}}-1\right), \tag{17}
\end{align*}
$$

and one of the right hand sides above is certainly $\leq M$ and the proof is complete.
We have simultaneously obtained a simple proof of a known theorem of Chebyshev ${ }^{2}$ which derives from our reasoning when a priori restricting the field of admissible polynomials ${ }^{3}$.

[^1]
[^0]: ${ }^{1}$ The author encountered this problem in the course of his work on the convergence of a certain process of successive approximations that he had proposed for the effective calculation of the polynomial of best approximation to a bounded function $f(x)$ on a uniformly bounded set of points. (Cf. my note, Comptes Rendus, Paris, 30, VII, 1934 and also my article in Ukrainian: "On the methods for realizing the best approximation of functions in the sense of Chebyshev", Acad. des Sc. d'Ukraine, 1935, pp. 99-100).

[^1]: ${ }^{2}$ P. L. Tchebyshef, "Sur les fonctions qui s'écartent peu de zéro pour certaines valeurs de la variable", Euvres tome 2, pp. 335-355.
 ${ }^{3}$ As understood, one sets a priori $E=[a, a+\lambda]$ or $E=[b-\lambda, b]$.

